Branching of the Wavefunction of the Universe During Inflation

C. Jess Riedel
Perimeter Institute

Work in progress with Elliot Nelson (Perimeter): 1704.xxxxx

Building on: EN, arXiv:1601.03734 (JCAP)
CJR, arXiv:1608.05377 (PRL)

February 21, 2017
Goal: Find the branches of the wavefunction

We want

• mathematical account of measurements as a physical process

• to remove ambiguity about if/when measurements happen

We are not challenging

• fundamental indeterminism

• non-locality (failure of local realism)

• your interpretation quantum mechanics
Branches

At each level, branches must
• be mutually orthogonal
• sum to $|\psi\rangle$
Alternative justification: multipartite entanglement

Forget measurement

All claims will boil down to statements about a certain type of multipartite entanglement

Correlations in pure state between spacelike separated regions
Key observation: measurements make many records

Dynamical, irreversible process of entanglement:

\[|\Psi\rangle = |\mathcal{E}\rangle \otimes |\text{lab}\rangle \otimes (|L\rangle + |R\rangle) \]

\[\rightarrow |\mathcal{E}\rangle \otimes \left(|\text{lab}^{(L)}\rangle |L\rangle + |\text{lab}^{(R)}\rangle |R\rangle \right) \quad \text{...so that} \quad \langle \text{lab}^{(L)} | \text{lab}^{(R)} \rangle \approx 0 \]

\[\rightarrow |\mathcal{E}^{(L)}\rangle |\text{lab}^{(L)}\rangle |L\rangle + |\mathcal{E}^{(R)}\rangle |\text{lab}^{(R)}\rangle |R\rangle \]

\[|\Psi^{(L)}\rangle = \otimes_i |\mathcal{E}_i^{(L)}\rangle \quad \text{...so that} \quad \langle \mathcal{E}_i^{(L)} | \mathcal{E}_i^{(R)} \rangle \approx 0 \]

= MANY redundant records of the measured degrees of freedom
Key observation: measurements make many records

In words: the key feature of physical measurements is amplification.

Measuring devices take state of single system and imprint it on many systems.

Creation of a certain type of multipartite entanglement:

“GHZ-like” entanglement

N-qubit GHZ state: $|00 \cdots 0\rangle + |11 \cdots 1\rangle$
Production of records

Ubiquitous process in Nature — not just laboratories

1. Decoherence by bath with \textit{weak} self-interactions

\begin{itemize}
 \item Zeh, Joos, Zurek (“Quantum Darwinism”), the Horodeckis, Tegmark, etc.
\end{itemize}

2. Spontaneous symmetry breaking

\[
| ←← ⋯ ← \rangle \quad \rightarrow \quad | ↑↑ ⋯ ↑ \rangle + | ↓↓ ⋯ ↓ \rangle
\]
Key observation: measurements make many records

How to find this structure in large many-body systems?

What about multiple measurements?

GHZ states are very special

Need definition of records that is robust to real-world messiness, without assuming preferred

- observables
- basis
- systems-environment split
Defining records

Records are defined \textit{with respect to} a tensor product structure ("lattice"): \(H = \bigotimes_n H^{(n)} \)

A record is associated with a \textbf{region} (subset of the lattice)

\(F = \bigotimes_{n \in F} H^{(n)} \)
Defining records

A projector is **local** to a region when it acts trivially elsewhere:

\[P^\mathcal{F} = P^\mathcal{F} \otimes I^{\bar{\mathcal{F}}} \]

\[= \left[\sum_{z \in P} |z\rangle^\mathcal{F}\langle z| \right] \otimes I^{\bar{\mathcal{F}}} \]

\[\mathcal{H} = \mathcal{F} \otimes \bar{\mathcal{F}} \]

\[P = P^2 = P^\dagger \]

\[\langle z|z'\rangle = \delta_{zz'} \]

An observable is **local** when its eigenspaces correspond to local projectors:

\[\Omega^\mathcal{F} = \left[\sum_i \omega_i P_i^\mathcal{F} \right] \otimes I^{\bar{\mathcal{F}}} \]

\[P_i P_j = \delta_{ij} P_i \]

\[\omega_i \in \mathbb{R} \]
Defining records

Given a pure state and two disjoint regions, one local observable **records** another when their eigenvalues are fully correlated:

\[P_i^F |\psi\rangle = P_i^{F'} |\psi\rangle \]

Equivalent: the reduced states at one region, **conditional** on different values at the other, are orthogonal

\[\text{Tr} [\rho_{F',:i}^F \rho_{F',:j}^F] = 0, \quad i \neq j \]

\[\rho_{F',:i}^F \equiv \text{Tr}_{\bar{F}} [P_i^F |\psi\rangle \langle \psi| P_i^{F'}] \]
Defining branches for one observable

Observers can infer the value of one observable by making a local measurement on another that records it.

Recording is a symmetric and transitive relation on local observables.

Each eigenvalue is associated with a branch:

$$|\psi_i\rangle \equiv P_i^F |\psi\rangle = P_i^{F'} |\psi\rangle = P_i^{F''} |\psi\rangle = \cdots$$

Branches are simultaneous eigenstates of all local observables.
Defining recorded observable and redundancy

A collection of local observables that record each other is a single recorded observable:

\[\Omega \equiv \{ \Omega^\mathcal{F}, \Omega^\mathcal{F}', \Omega^\mathcal{F}'', \ldots \} \]

The number of records is the redundancy:

\[R = |\Omega| \]
Now consider multiple recorded observables for many classical macroscopic outcomes

\[\{ \Omega_1, \Omega_2, \Omega_3, \cdots \} = \{ \{ \Omega_1^F, \Omega_1^{F'} \}, \{ \Omega_2^G, \Omega_3^G \}, \cdots \}, \cdots \} \]
Multiple recorded observables

Now consider multiple recorded observables for many classical macroscopic outcomes
Multiple recorded observables

Now consider multiple recorded observables for many classical macroscopic outcomes
Multiple recorded observables

Now consider multiple recorded observables for many classical macroscopic outcomes.
Multiple recorded observables

Now consider multiple recorded observables for many classical macroscopic outcomes

[Diagram with labeled sets Ω₁, Ω₂, Ω₃, F', F'', F''', G', G'', I', I'', I]
Defining compatibility

A set of recorded observables are **compatible** if there is a joint branch decomposition

\[|\psi\rangle = \sum_{i,j,k,\ldots} |\psi_{i,j,k,\ldots}\rangle \]

of simultaneous eigenstates

\[
\begin{align*}
\omega_i |\psi_{i,j,k,\ldots}\rangle &= \Omega_i^F |\psi_{i,j,k,\ldots}\rangle = \Omega_i^{F'} |\psi_{i,j,k,\ldots}\rangle = \cdots \\
\omega_j |\psi_{i,j,k,\ldots}\rangle &= \Omega_j^G |\psi_{i,j,k,\ldots}\rangle = \Omega_j^{G'} |\psi_{i,j,k,\ldots}\rangle = \cdots \\
\omega_k |\psi_{i,j,k,\ldots}\rangle &= \Omega_k^I |\psi_{i,j,k,\ldots}\rangle = \Omega_k^{I'} |\psi_{i,j,k,\ldots}\rangle = \cdots \\
&\vdots
\end{align*}
\]
Connection between records and branches

Key claim:

Set of recorded observables with “very large” redundancy is “very likely” to be compatible

Somewhat more precisely:

As $R's \to \infty$, regions must become pathological stringy to avoid compatibility

For details, see arXiv:1608.05377 [PRL, to appear]
Connection between records and branches

Some other claims:

- Very large redundancy is unlikely to be eliminated…until thermalization — irreversibility

- For very large redundancy, distinguishing between

\[|\psi\rangle = \sum_i |\psi_i\rangle \quad \text{vs.} \quad \rho = \sum_i |\psi_i\rangle\langle\psi_i| \]

requires infeasibly non-local measurement — “collapse”

Large redundancy \(\leftrightarrow\) branches
Cosmology

How and when does branching happen in primordial cosmology?

\[|\Psi(\varphi)\rangle \rightarrow \sum_{\varphi(x)} \]

- Pure state of the universe
- Different possible primordial fluctuations
- The realization we observe
Why cosmology?

Why consider perturbations during inflation?

- No observers or measuring devices in early universe — strains interpretation of quantum mechanics
- Realistic & popular “fundamental” system: relativistic QFT with gravity
- Redundant records as consequence of acceleration ($\ddot{a} > 0$)
- Tractable (many symmetries, large existing literature)
- Origin of all subsequent indeterminism / branching
Inflation review

Simplest model of slow-roll inflation

Only two fields: **metric** and **inflaton**

\[
S = \int d^4 x \sqrt{|g|} \left[\frac{1}{2} R(g) + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right]
\]
Inflation review: classical solution

Flat, isotropic, spatially homogeneous classical solution:

\[ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -dt^2 + a(t) d\vec{x}^2 \]

Exponential expansion during slow roll

\[a(t) \sim e^{Ht} \]

from shape of \(V(\phi) \)
Inflation review: quantum perturbations

Our quantum system: the scalar perturbation about the classical background

Gauge invariant quantity:

\[\zeta(t, \vec{x}) \equiv \delta \left[\ln \left(\frac{a(t, \vec{x})}{a_0(t)} \right) \right] - H \delta \left[\frac{\phi(t, \vec{x})}{\dot{\phi}_0(t)} \right] \]

Classical solutions
Inflation review: quantum perturbations (linear)

Reduced Hamiltonian dynamics for linear theory ($\epsilon \to 0$):

$$H = \frac{1}{2} \int d^3 \mathbf{x} \left[\frac{1}{a^3 \epsilon} \pi_x^2 + a \epsilon (\nabla \zeta_x)^2 \right]$$

In k-space, modes are decoupled in linear theory:

$$H = \frac{1}{2} \int d^3 \mathbf{k} \left[\frac{1}{a^3 \epsilon} \pi_k^2 + a \epsilon k^2 \zeta_k^2 \right]$$

For each k, “horizon crossing” is characteristic timescale when

$$\lambda_{\text{phys}} = \lambda_H$$

$$\lambda_{\text{phys}} \equiv a(t)\hbar/k$$

$$\lambda_H \equiv c/H$$
Inflation review: quantum perturbations (linear)

Dilation symmetry under $(k, a) \rightarrow (\beta k, \beta a)$
Modes start in ground state
...become exponentially squeezed after horizon crossing:

\[k \gg aH \quad \text{and} \quad k \ll aH \]

Wigner function
(phase-space representation of quantum state)

\[\langle |\zeta_k|^2 \rangle \propto \left(\frac{k}{aH} \right)^2 \rightarrow 0 \]

Amplitude of fluctuations:
\[\Delta^2 \zeta \equiv \langle \zeta^2 \rangle = \frac{H^2}{8\pi^2\epsilon} \sim 10^{-9} \]
Inflation review: quantum perturbations (interacting)

Even in simplest models, gravitational nonlinearities give interactions between \(k \)-modes

For minimal slow-roll, these are the first non-negligible interactions.

Generic: decoherence of large-wavelength modes by small-wavelength modes

EN, arXiv:1601.03734 [JCAP]

More complicated models can modify and introduce decoherence earlier, but this simple picture captures basic idea
Gravitational Nonlinearities

Consider (short)-wavelength ζ evolving within long-wavelength background ζ_L

$$\mathcal{L}_0 + \mathcal{L}_{\text{int}} = \epsilon a^3 (1 + 3\zeta_L) \dot{\zeta}^2 - \epsilon a (1 + \zeta_L) (\partial \zeta)^2 + \ldots + \mathcal{O}(\epsilon^2)$$

Non-Gaussianity

derivative interactions

A long-wavelength background ζ_L acts like a shift in $a(t)$

Squeezed-limit Bispectrum $\langle \zeta \zeta \zeta_L \rangle = 0$ (no shift in power spectrum)

But cross-bispectrum $\langle \pi \pi \zeta_L \rangle \neq 0$ (shift in time)

Conjugate momentum $\pi \equiv \delta \mathcal{L} / \delta \dot{\zeta}$

$$\propto \dot{\zeta} + 3\zeta \dot{\zeta} + \ldots$$

[Conjecture by Maldacena '03; Burrage+ '11; Creminelli+ '11, '12]
A tiny shift in time completely changes the squeezed state (for a shorter mode)

Precision = \frac{\Delta a}{a} \sim \frac{k}{aH} \ll 1
\sim \zeta_L

...the mode acquires a **record** of the long-wavelength background, with **increasing precision**
Field of Clocks

$\zeta_L(x)$

π_S
Branching structure for wavefunction of the universe

The shorter modes act as a recording environment for the longer modes.

\[
|\Psi\rangle = \left(\sum_{\varphi_S} \psi_S(\varphi_S) |\varphi_S\rangle \right) \left(\sum_{\varphi_M} \psi_M(\varphi_M) |\varphi_M\rangle \right) \left(\sum_{\varphi_L} \psi_L(\varphi_L) |\varphi_L\rangle \right)
\]

\[
\rightarrow \left(\sum_{\varphi_S} \psi_S(\varphi_S) |\varphi_S\rangle \right) \sum_{\varphi_M,\varphi_L} \psi_M(\varphi_M) |\varphi_M\rangle \cdot \psi_L(\varphi_L) |\varphi_L\rangle
\]

\[
\rightarrow \sum_{\varphi_S,\varphi_M,\varphi_L} \psi_S(\varphi_S) |\varphi_S\rangle \cdot \psi_M(\varphi_M) |\varphi_M\rangle \cdot \psi_L(\varphi_L) |\varphi_L\rangle
\]

Field configuration \(\varphi = \frac{\sqrt{2\epsilon}}{H} \zeta \)
Field of Clocks
Decoherence of Long-wavelength Mode

Integrate out part of the field: \(\rho(\zeta_L, \tilde{\zeta}_L) = \int \mathcal{D}\zeta_S \Psi[\zeta]|\zeta_L \Psi^*[\zeta]|\tilde{\zeta}_L \)

...to obtain mixed state for long-wavelength field

For a single long-wavelength mode \(\zeta_q \):

\[
\rho(\zeta_q, \tilde{\zeta}_q) \bigg|_a \propto \exp \left[-\Delta^2_{\zeta} \left(\frac{aH}{q}\right)^3 \cdot \frac{|\zeta_q - \tilde{\zeta}_q|^2}{2\langle|\tilde{\zeta}_q|^2\rangle} \right] \cdot \mathcal{O}(1)
\]

Density matrix becomes diagonal \(\frac{1}{3} \ln \Delta^{-2}_{\zeta} \approx 7 \) e-folds after horizon crossing \((q = aH) \)

 Mostly from Hubble-scale environment modes (less precise clocks, but many more of them)

=system/environment hierarchy in scales
Measurement Basis (Pointer Basis)

Short mode cannot detect variation in $\zeta_L(\tau)$ as it freezes out,

$$\Delta \zeta_q \sim (q/aH)^2 \cdot \zeta_q^{(\infty)}$$

Precision of short-mode “clocks” does not grow fast enough to see this.

Similarly, decoherence does not occur in conjugate momentum basis

$$\rho(\pi(\zeta), \tilde{\pi}(\zeta)) \rightarrow \text{diagonal}$$

Pointer basis \approx field amplitude eigenstates [Kiefer+ ’07, Burgess+ ‘14]
Wavefunction for long modes “collapses” to green pointer states following measurement by shorter modes

Or, exchanging momentum π

For physical velocity ζ,
Redundant Records

Many clocks record the long-wavelength background

Redundancy (\# of records with precision $\Delta \zeta$)

$$\sim \frac{|\Delta \zeta_q|^2}{\sigma_\zeta^2} \sim \frac{|\Delta \zeta_q|^2}{\langle |\Delta \zeta_q|^2 \rangle} \Delta^2 \zeta \left(\frac{aH}{q} \right)^3$$
Lab measurements are special case of **amplification** (occurs naturally)

Amplification defined abstractly in terms of **redundant records**

(Strong correlations between many spacelike separated regions)

Sufficiently redundant records generate **branches**

Inflation provides clean model

Accelerated expansion turns scalar modes into sensitive clocks

Gravity couples modes, allowing the clocks to make a measurement

Many modes → redundant records & wavefunction branching
The End

EN, arXiv:1601.03734
CJR, arXiv:1608.05377

(Email jessriedel@gmail.com if you want a notification when the joint paper comes out.)